On uniform convergence of the inverse Fourier transform for differential equations and Hamiltonian systems with degenerating weight
نویسندگان
چکیده
We study pseudospectral and spectral functions for Hamiltonian system J y ′ − B ( t ) = λ Δ $Jy^{\prime }-B(t)=\lambda \Delta (t)y$ differential equation l [ ] $l[y]=\lambda with matrix-valued coefficients defined on an interval I a , b $\mathcal {I}=[a,b)$ the regular endpoint a. It is not assumed that matrix weight ≥ 0 $\Delta (t)\ge 0$ invertible a.e. {I}$ . In this case function always exists, but set of may be empty. obtain parametrization σ τ $\sigma =\sigma _\tau$ all by means Nevanlinna parameter single out in terms boundary conditions class which inverse Fourier transform ∫ R φ s d ̂ $y(t)=\int _\mathbb {R}\varphi (t,s)\, d\sigma (s) \widehat{y}(s)$ converges uniformly. also show scalar This enables us to extend Kats–Krein Atkinson results Sturm–Liouville p + q $-(p(t)y^{\prime })^{\prime }+q(t)y=\lambda (t) y$ such equations arbitrary $p(t)$ $q(t)$ non trivial
منابع مشابه
global results on some nonlinear partial differential equations for direct and inverse problems
در این رساله به بررسی رفتار جواب های رده ای از معادلات دیفرانسیل با مشتقات جزیی در دامنه های کراندار می پردازیم . این معادلات به فرم نیم-خطی و غیر خطی برای مسایل مستقیم و معکوس مورد مطالعه قرار می گیرند . به ویژه، تاثیر شرایط مختلف فیزیکی را در مساله، نظیر وجود موانع و منابع، پراکندگی و چسبندگی در معادلات موج و گرما بررسی می کنیم و به دنبال شرایطی می گردیم که متضمن وجود سراسری یا عدم وجود سراسر...
On The Simulation of Partial Differential Equations Using the Hybrid of Fourier Transform and Homotopy Perturbation Method
In the present work, a hybrid of Fourier transform and homotopy perturbation method is developed for solving the non-homogeneous partial differential equations with variable coefficients. The Fourier transform is employed with combination of homotopy perturbation method (HPM), the so called Fourier transform homotopy perturbation method (FTHPM) to solve the partial differential equations. The c...
متن کاملStudy on usage of Elzaki transform for the ordinary differential equations with non-constant coefficients
Although Elzaki transform is stronger than Sumudu and Laplace transforms to solve the ordinary differential equations withnon-constant coefficients, but this method does not lead to finding the answer of some differential equations. In this paper, a method is introduced to find that a differential equation by Elzaki transform can be solved?
متن کاملSimulation of Singular Fourth- Order Partial Differential Equations Using the Fourier Transform Combined With Variational Iteration Method
In this paper, we present a comparative study between the modified variational iteration method (MVIM) and a hybrid of Fourier transform and variational iteration method (FTVIM). The study outlines the efficiencyand convergence of the two methods. The analysis is illustrated by investigating four singular partial differential equations with variable coefficients. The solution of singular partia...
متن کاملon the simulation of partial differential equations using the hybrid of fourier transform and homotopy perturbation method
in the present work, a hybrid of fourier transform and homotopy perturbation method is developed for solving the non-homogeneous partial differential equations with variable coefficients. the fourier transform is employed with combination of homotopy perturbation method (hpm), the so called fourier transform homotopy perturbation method (fthpm) to solve the partial differential equations. the c...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Mathematische Nachrichten
سال: 2022
ISSN: ['1522-2616', '0025-584X']
DOI: https://doi.org/10.1002/mana.202000062